Аэродинамика

Несмотря на то, что кузов «Москвича» был позаимствован у «Симки», инженерами АЗЛК была проведена определенная работа по доводке аэродинамических характеристик машины. Поскольку основное отличие «Москвича» от «Симки» заключалось в оформлении передней части, специалисты завода сосредоточили свое основное внимание именно на ней, а также пытались улучшить обтекание днища машины. В частности, скругленная передняя кромка капота позволила достичь безотрывного обтекания передка. Для уменьшения завихрений воздуха под днищем машины перед картером двигателя был установлен аэродинамический щиток. За счет удачного с потребительской точки зрения обтекания боковин, на которых поток воздуха был направлен вниз, удалось избавиться от брызговиков как за передними, так и за задними колесами.

К сожалению, в то время СССР не обладал собственной полноразмерной аэродинамической трубой для продувки автомобилей, а авиационные трубы были не слишком приспособлены для автомобилей. Масштабные модели автомобиля продувались на кафедре механики МГУ, а на заключительном этапе разработки полноразмерные образцы испытывались в ЦАГИ и на фирме Renault. Коффициент обтекаемости серийного автомобиля был объявлен равным 0,35. Это весьма неплохой параметр даже по сегодняшним меркам, а уж в восьмидесятых годах, для отечественной машины это была просто победа.

В 1988 году у отечественного автопрома появилась, наконец, своя полноразмерная аэродинамическая труба, построенная на Дмитровском автополигоне под Москвой. И в нее сразу же был направлен серийный «Москвич-2141». Отчет об этом знаменательном событии был опубликован в журнале «За рулем», на обложке которого была помещена гордая фотография «Москвича», установленного на шестикомпонентных весах дмитровской трубы. На фото видно в целом плавное обтекание машины. В зоне боковин кузова поток воздуха направлен вниз, за счет этого обеспечивается относительная чистота машины даже в слякоть. Обтекание задней двери безотрывное, именно это позволило отказаться от заднего стеклоочистителя, хотя сначала завод планировал устанавливать его как дополнительное оборудование. Однако в статье не было самого главного: цифр. Журнал не поместил результата испытаний серийного «Москвича». В то время я не придал этому значения, ведь «точную» цифру я уже знал ранее. Но все оказалось не так просто.

На Москвич, возможно, установить, к примеру, карбюратор от ВАЗ-21213. Еще она составная часть, подлежащая смене — вакуумный усилитель тормозной системы, также не забудьте про качественный ремонт глушителей в Петербурге.

Здесь я хочу отвлечься и обсудить ту часть кузова «Симки», которая перешла на «Москвич» практически без изменений, и которая была неподвластна инженерам при доводке машины, а именно задок. В нескольких следующих абзацах содержатся интересные данные, полученные немецкими инженерами в 70-х годах при работе над первыми моделями «Гольфа», «Пассата» и «Ауди-100». Конечно, с тех прошло уже более 20 лет, но выводы, сделанные тогда, применимы и сейчас, тем более к автомобилю, который был скопирован с машины, выпущенной в 1975 году. Эта информация позволяет оценить аэродинамическую эффективность задней части «Москвича», а также проделанную работу по снижению аэродинамического сопротивления машины.

На рисунке вверху показано влияние угла наклона панели задка на коэффициент сопротивления воздуха и положение линии отрыва. На автомобилях с круто срезанной задней частью, с углом наклона задней панели к горизонтали от 40 до 60 градусов, линия отрыва потока совпадает с задней кромкой крыши. Кромочные вихри в форме вихревых трубок, которые создают на нацеленной поверхности задка разрежение, не возникают (см. нижний ряд рисунков на иллюстрации вверху).[19]

Изменеиие Cx в зависимости от наклона двери задка

В рассматриваемом случае базовый коэффициент аэродинамического сопротивления составляет: Cw=0,40. Если угол наклона поверхности задка уменьшать, то можно получить граничное значение угла, при котором линия отрыва переходит с кромки крыши на нижнюю кромку наклонной поверхности задка (см. верхний ряд рисунков). Одновременно образуются два сильных вращающихся вовнутрь продольных вихря, которые индуцируют на наклонной поверхности задка сильное разрежение (см. правый верхний эскиз на рисунке вверху). Этот процесс сопровождается повышением аэродинамического сопротивления, которое в рассматриваемом случае составляет 10%.[19]

Если угол наклона поверхности задка уменьшать дальше, то значение коэффициента аэродинамического сопротивления вследствие ослабления интенсивности продольных трехмерных вихрей снова уменьшается. При угле наклона 23° получается значение Cw=0,40, такое же, как у автомобиля с круто срезанной задней частью. Для низких спортивных купе допустимы углы наклона панели задка до 15°, что дает по сравнению с круто срезанной формой задней части уменьшение коэффициента аэродинамического сопротивления почти на 15%.[19]

Имеющие место на графике характерные точки залома кривой коэффициента аэродинамического сопротивления в зависимости от угла наклона панели задка соответствуют строго зафиксированным значениям угла наклона задка лишь тогда, когда переход крыши и поверхности задка выполнен в виде острой кромки (без округления). Если же этот переход выполнен со округлением, то переходная область, характеризующаяся пульсирующим изменением положения линии отрыва, перемещающейся с кромки крыши на нижнюю кромку наклонной панели задка, ограничивается диапазоном 28° ­ 32°.[19]

Угол наклона задней двери «Москвича» составляет примерно 27°, то есть чуть меньше, чем пограничное значение, при котором линия отрыва потока прыгает с нижней кромки двери на верхнюю и обратно. У «Москвича» срыв потока в задней части машины происходит строго по нижней кромки двери, и уже эта однозначность хороша сама по себе. Это положительно сказывается на чистоте заднего стекла, но отрицательно влияет на коэффициент лобового сопротивления. С точки зрения аэродинамического сопротивления у «Москвича» совершенно неудачный задок .

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.